
Version 01: Add Places, Routes and Create Shareable Itineraries

A user who wants to plan their travel on an interactive map interface - opens this application,
adds places by their names or address. Further the user confirms routes between each pair
of places to create an itinerary. The user can add personal and optional notes to places and
routes as required. Post the places and routes are confirmed, the user can generate a
shareable link to make the itinerary viewable to all that can access it through the link.

This feature as a standalone product allows users an option other than Google Maps to plan
their travel itinerary. Users can add notes to places and plan and confirm each route
individually, unlike Google Maps. This feature as a standalone would be targeting a niche
user persona of travel planners - unlike google maps which is a generic app.

Flow

1. a user visiting the website, on loading, can see a vector map loaded - the user can play
around by zooming and panning
2. the user is able to click on a bar to add places on this map interface. On clicking Add, the
places are added as markers onto the map.
3. the user should be able to click on these places to remove them or add personal notes to
them.
4. the user should be able to access a 'Plan Route' option from the UI and select any two
place markers to plan a route between them. The user is displayed multiple routes from
which they can confirm one.
5. the user can click on any added route to add personal notes or remove those routes
7. the user should be able to save a map post completely adding all places and routes or
midway. A saved map can be accessed later for completion.
8. the user can access the saved maps through a CTA on UI over the vector map interface.
At any point of time a user loads the website they can add new places and routes to create a
new map or open a saved map.
9. on clicking saved map icon, the user can select any of their saved maps to view the
already added places and routes
10. the user should be able to generate a shareable link for the saved maps, this link can be
shared to anyone who can open this map with all places and routes visible in view-only
mode
12. post a map is saved, the user should receive a popup to share their feedback. Once a
user has already given a feedback, then the same popup should not be visible to them again

Requirements

Rules

1. Use Next JS + Tailwind for frontend
2. This version of application is serverless - as in IndexedDB to be used for storage and

retrieval
3. Develop a PWA so that it can run on web and can be installed in mobile devices
4. Ensure that the UI/UX experience is good on desktop as well as mobile screens

5. Use Ola Maps for Mapping use cases - use Ola Maps Website SDK for rendering
vector maps, managing markers, and events. Separate Ola Maps APIs are available
for Directions, Routes as specified in detail in the below table (feature description and
tech stack).

6. Security: Use Next.js API routes as a proxy to hide API keys. Process
geocoding/routing requests server-side.

7. Storage Method
a. Use IndexedDB via LocalForage to store maps, routes, and places without a

backend.
b. IndexedDB allows structured storage, making it faster than LocalStorage for

large datasets.
8. User Session Management (No Authentication)

a. Use localStorage or a persistent browser fingerprint (e.g., uuid stored in
localStorage) to retain maps across sessions.

b. Generate UUID on first visit using crypto.randomUUID() and store in
localStorage

c. Store uuid in `maps` and `feedback` tables to differentiate users.
9. Map Saving & Loading

a. Save maps as JSON in IndexedDB.
b. Retrieve and display them using React state

10. Shareable Links
a. Store `map_id` in the URL, encode the entire map data as a compressed

JSON string in the URL hash (e.g., yourdomain.com/map/#<encoded_data>
b. Fetch map details using `map_id` when the link is opened.

11. Routing Optimization
a. Use Ola Maps Routing API to fetch route data and store it in JSON format

inside the `route_data` column.
12. Error Handling

a. Display Toast Message if an API fails, return the message from the API
b. Warn users when approaching IndexedDB storage quotas

Feature Description and Tech Stack

Feature Feature Description and Technical
Documents

Tech Stack

1. Home Page -
Render Vector Map:
Zooming & panning
functionalities

As soon as the website is loaded,
render a map with Pune as the default
location. User should be able to zoom
and pan this map.

Define map style: Ola Vector Map Tiles

Setup and initialize Ola Maps SDK to
render vector styles: Ola Maps Web
SDK

Use Ola Maps
WebSDK to render
Vector Maps

http://yourdomain.com/map/#
https://cloud.olakrutrim.com/console/maps?section=map-docs%2Fmap-tiles%2Fvector-map-tiles
https://maps.olakrutrim.com/krutrim/docs/sdks/web-sdk/setup
https://maps.olakrutrim.com/krutrim/docs/sdks/web-sdk/setup

2. Add Places Display a bar on the top right for users
to add places. Users enter the name or
address of the place and click "Add
Place" - use geocoding based on place
name: Ola Geocoding API.

On clicking "Add Place," the place
should be added as a marker in the
map, and the map should route to this
location. Add a default marker: Ola
Maps Marker API.

If multiple places exist with the same
name or address, allow the user to
confirm one by clicking the place
marker to see a confirm CTA. If only
one place is found, confirm by default.

Save places in IndexedDB only when
confirmed.

Ola Geocoding API +
IndexedDB for storing
confirmed places

3. Click on markers
to add user notes

Click event on a place marker within
the map: Ola Maps Events.

Users can remove the place marker or
add a personal note to the place.

Ola Maps Events +
React State +
IndexedDB for storing
notes and managing
remove operations

4. Add route
between two points

Use Ola Directions API with waypoints.

Users should be able to select a "Route
Tool" on the map overlay, then select
any two place markers to create a
route.

Ola Maps Routing API
+ Next.js + Tailwind for
overlay CTAs

5. Identify and
confirm routes

Use event to identify route click: Ola
WebSDK Events.

If there is only one route, confirm it by
default; otherwise, the user can select
one route and confirm via a CTA.

Once a route is confirmed, the user can
click on any route to get a remove
option. On clicking "Remove," the route
should not be visible on the map.

Save route details in IndexedDB only
post-confirmation.

IndexedDB
(localForage) + React
State + Ola WebSDK
Events

https://cloud.olakrutrim.com/console/maps?section=map-docs%2Fgeocoding%2Fgeocoding-api
https://maps.olakrutrim.com/krutrim/docs/sdks/web-sdk/markers
https://maps.olakrutrim.com/krutrim/docs/sdks/web-sdk/markers
https://cloud.olakrutrim.com/console/maps?section=map-docs%2Fsdks%2Fweb-sdk%2Fmap-controls
https://cloud.olakrutrim.com/console/maps?section=map-docs%2Frouting-apis%2Fdirections-api
https://cloud.olakrutrim.com/console/maps?section=map-docs%2Fsdks%2Fweb-sdk%2Fmap-controls
https://cloud.olakrutrim.com/console/maps?section=map-docs%2Fsdks%2Fweb-sdk%2Fmap-controls

6. Add Notes or
Remove routes

Allow users to enter personal notes.

Click on a route to reveal a "Remove"
CTA in the description panel. On
clicking, the route is removed.

Users can recreate a new route
between those two place markers.

IndexedDB
(localForage) + React
State

7. Save the map with
all routes added

A saved map includes all added place
markers and confirmed routes, along
with any user-added notes.

Save maps against the user session
(avoid authentication flow).

IndexedDB
(localForage) + React
State

8. Prompt user for
feedback after
saving

Identify users based on browser
sessions.

Only ask for feedback when a map is
successfully saved. Users can close
the modal without sharing.

If a user has already shared feedback,
do not ask again during future saves.

React Modal + Simple
Form. Store feedback
via IndexedDB

9. Share map via link
and View shared
maps

Users should be able to one-click copy
a link to share the map.

On link click, anyone can view the map
but not edit it.

Next.js API Route +
TinyURL for shortening

10. Option to View
Saved Maps

A "View Saved Maps" CTA should be
available on the map interface.

Clicking on it should route users to a
list of saved maps.

Only maps from the same browser
session should be accessible. Identify
the user via UUID in localStorage
or a persistent browser ID.

Clicking a saved map allows users to
view places and routes and make
modifications.

Next.js + Tailwind for UI

11. Show PWA install
popup

Allow user to install the PWA through a
popup once the webpage is ready to be
downloaded.
- Listen for the beforeinstallprompt
event (fired when PWA is installable).
- Show a CTA/button (e.g., "Install
App").
- Trigger the installation prompt when
the user clicks.

beforeinstallprompt

IndexedDB Schema

``` 
-- Table to store maps created by the user  
 
CREATE TABLE maps (  
id TEXT PRIMARY KEY, -- Unique identifier (UUID or NanoID)  
name TEXT NOT NULL, -- User-defined map name created_at TIMESTAMP DEFAULT 
CURRENT_TIMESTAMP, -- Timestamp of creation  
uuid TEXT NOT NULL -- user-based identifier (no login required) ); 
 
-- Table to store places within a map  
 
CREATE TABLE places (  
id INTEGER PRIMARY KEY AUTOINCREMENT,  
map_id TEXT NOT NULL, -- Foreign key to maps table  
name TEXT NOT NULL, -- Name of the place  
latitude REAL NOT NULL, -- Latitude coordinate  
longitude REAL NOT NULL, -- Longitude coordinate  
user_notes TEXT, -- Optional user-added notes  
FOREIGN KEY (map_id) REFERENCES maps(id) ON DELETE CASCADE );  
 
-- Table to store routes created within a map  
 
CREATE TABLE routes (  
id INTEGER PRIMARY KEY AUTOINCREMENT,  
map_id TEXT NOT NULL, -- Foreign key to maps table  
start_place_id INTEGER NOT NULL,-- Foreign key to places table (starting point) 
end_place_id INTEGER NOT NULL, -- Foreign key to places table (ending point) route_data 
TEXT NOT NULL, -- Serialized JSON data for route details (path, distance, time)  
user_notes TEXT, -- Optional user-added notes  
FOREIGN KEY (map_id) REFERENCES maps(id) ON DELETE CASCADE,  
FOREIGN KEY (start_place_id) REFERENCES places(id) ON DELETE CASCADE,  



FOREIGN KEY (end_place_id) REFERENCES places(id) ON DELETE CASCADE );  
 
-- Table to store user feedback  
 
CREATE TABLE feedback (  
id INTEGER PRIMARY KEY AUTOINCREMENT,  
uuid TEXT NOT NULL, -- Identify user without login  
map_id TEXT NOT NULL, -- Map associated with feedback  
feedback_text TEXT, -- User feedback  
submitted_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,  
FOREIGN KEY (map_id) REFERENCES maps(id) ON DELETE CASCADE ); 
 
``` 


